Comparison of the load-sharing characteristics
نویسندگان
چکیده
Recently, numerous types of posterior dynamic stabilization (PDS) devices have been introduced as an alternative to the fusion devices for the surgical treatment of degenerative lumbar spine. It is hypothesized that the use of ‘compliant’ materials such as Nitinol (Ni–Ti alloy, elastic modulus = 75 GPa) or polyether-etherketone (PEEK, elastic modulus = 3.2 GPa) in PDS can restore stability of the lumbar spine without adverse stress-shielding effects that have been often found with ‘rigid’ fusion devices made of ‘rigid’ Ti alloys (elastic modulus = 114 GPa). Previous studies have shown that suitably designed PDS devices made of more compliant material may be able to help retain kinematic behavior of the normal spine with optimal load sharing between the anterior and posterior spinal elements. However, only a few studies on its biomechanical efficacies are available. In this study, we conducted a finite-element (FE) study to investigate changes in load-sharing characteristics of PDS devices. The implanted models were constructed after modifying the previously validated intact model of L3-4 spine. Posterior lumbar fusion with three different types of pedicle screw systems was simulated: a conventional rigid fixation system (Ti6A l4 V, = 6.0 mm) and two kinds of PDS devices (one with Nitinol rod with a three-coiled turn manner, = 4.0 mm; the other with PEEK rod with a uniform cylindrical shape, = 6.0). To simulate the load on the lumbar spine in a neutral posture, the axial compressive load (400 N) was applied. Subsequently, the changes in load-sharing characteristics and stresses were investigated. When the compressive load was applied on the implanted models (Nitinol rod, PEEK rod, Ti-alloy rod), the predicted axial compressive loads transmitted through the devices were 141.8 N, 109.8 N and 266.8 N, respectively. Axial forces across the PDS devices (Nitinol rod, PEEK rod) and rigid system (Ti-alloy rod) with facet joints predicted to take over 41%, 33% and 71% of the applied compression load, respectively. Our results confirmed the hypothesis on the PDS devices by showing the substantial reduction in stress-shielding characteristics. Higher axial load was noted across the anterior structure with the PDS devices, which could slow the degeneration process of bony structures and lower the possibility of implant failure. (Some figures in this article are in colour only in the electronic version) 1748-6041/08/000000+06$30.00 1 © 2008 IOP Publishing Ltd Printed in the UK Biomed. Mater. 3 (2008) 000000 Y-H Ahn et al
منابع مشابه
DC Voltage Control and Power-Sharing of Multi-Terminal DC Grids Based on Optimal DC Power Flow and Flexible Voltage Droop Strategy
This paper develops an effective control framework for DC voltage control and power-sharing of multi-terminal DC (MTDC) grids based on an optimal power flow (OPF) procedure and the voltage-droop control. In the proposed approach, an OPF algorithm is executed at the secondary level to find optimal reference of DC voltages and active powers of all voltage-regulating converters. Then, the voltage ...
متن کاملVoltage Control and Load Sharing in a DC Islanded Microgrid Based on Disturbance Observer
Increasing DC loads along with DC nature of distributed energy resources (DERs) raises interest to DC microgrids. Conventional droop/non-droop power-sharing in microgrids suffers from load dependent voltage deviation, slow transient response, and requires the parameters of the loads, system and DERs connection status. In this paper, a new nonlinear decentralized back-stepping control strategy f...
متن کاملLoad Sharing Control of Parallel Inverters with Uncertainty in the Output Filter Impedances for Islanding Operation of AC Micro-Grid
Parallel connection of inverter modules is a solution to increase reliability, efficiency and redundancy of inverters in Micro-Grid system. Proper load sharing among parallel inverters is a key point. The circulating current among the inverters can greatly reduce the efficiency or even cause instability of the system. In this paper, a control strategy for improving the load sharing performance ...
متن کاملAccurate power sharing for parallel DGs in microgrid with various-type loads
Microgrids are nowadays used to produce electric energy with more efficiency and advantage. However, the use of microgrids presents some challenges. One of the main problems of the microgrids widely used in electrical power systems is the control of voltage, frequency and load sharing balance among inverter- based distributed generators (DGs) in islanded mode. Droop method performance degra...
متن کاملAccurate power sharing for parallel DGs in microgrid with various-type loads
Microgrids are nowadays used to produce electric energy with more efficiency and advantage. However, the use of microgrids presents some challenges. One of the main problems of the microgrids widely used in electrical power systems is the control of voltage, frequency and load sharing balance among inverter- based distributed generators (DGs) in islanded mode. Droop method performance degra...
متن کاملتقسیم بار بین اینورترهای موازی میکروگرید با استفاده از روش کنترل تکسیکلی
This paper investigate the properties of the circulating current and load sharing in parallel microgrid inverters. The existing methods cannot minimize efficient circulating current for the case of nonlinear load. The one-cycle control (OCC) technique and virtual complex impedance loop are included in the proposed controller in order to proper load sharing and reduce the circulating current due...
متن کامل